IC Design for Secure & Reliable Computing Systems

NSF Integrated Circuits Research, Education, and Workforce Development Workshop

Daniel Limbrick

Automated Design for Emerging Processing Technologies (ADEPT) Laboratory

Department of Electrical and Computer Engineering North Carolina Agricultural and Technical State University

Thursday, October 14, 2021

- 1 About NC A&T (Education, Diversity & Inclusion)
- 2 About ADEPT Lab (Existing Resources)
- 3 Research
- 4 Current Projects
- 5 Needs

- 1 About NC A&T (Education, Diversity & Inclusion)
- 2 About ADEPT Lab (Existing Resources)
- 3 Research
- 4 Current Projects
- 5 Needs

NC A&T Overview

- Land-grant doctoral research university that opened in 1891
- One of the Historically Black Colleges and Universities (HBCUs)
- Student Population ≈ 13,000 (UG: 11,500; G: 1,500)
- Located in Greensboro, NC, (60 miles from Research Triangle Park)

Largest HBCU in the nation

#1 producer of black engineers in the nation

Department of Electrical & Computer Engineering

Population

- ► Faculty ≈ 20
- ▶ Students \approx 300 undergraduate; 50 graduate

Degrees

- B.S. in Computer Engineering, Electrical Engineering
- M.S. in Electrical Engineering
- ▶ Ph. D. in Electrical Engineering (1 of 4 HBCUs in country)

Courses Related to IC Design

Undergraduate

- Digital Logic Design
- ► Digital Systems Design
- Advanced Digital Systems Design
- VLSI Design
- Senior Design

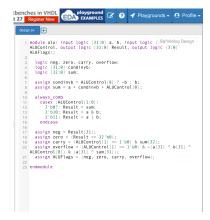
Graduate

- Advanced Digital Systems Design
- VLSI Design
- ► Fault Tolerant Digital Systems Design
- Mixed-Signal VLSI Design
- Advanced VLSI Design
- Electronic Design Automation
- Digital Systems Verification

Senior Design

- Teams of four undergraduate students
- Two semester sequence
- Semester I
 - Learn the design process as applied to electrical and computer systems
 - Learn technical design tools
 - Learn professional skills

Semester II


- Implement design
- Test system blocks
- Interface and test prototypes
- Demonstrate teamwork, technical writing, communications, and project management
- Example: Designing Pi HATs

Course Tools

- EDAPlayground
- Cadence Digital IC tools (local server access)
- Mentor Graphics QuestaSim (local server access)
- Open-source tools through VM

- About NC A&T (Education, Diversity & Inclusion)
- 2 About ADEPT Lab (Existing Resources)
- 3 Research
- 4 Current Projects
- 5 Needs

ADEPT Research Lab

Automated Design for Emerging Processing Technologies

Reliable ICs

Fault Simulation Fault Mitigation

2 Secure ICs

Secure Microkernels Side-channel Attacks

Emerging ICs

Monolithic 3D ICs **Quantum Computing**

Director

Dr. Daniel Limbrick Associate Professor August 2013-Present

Education

Postdoc - Georgia Tech PHD. MS - Vanderbilt BS - Texas A&M

Students

Ahmed Yiwere PhD Student (Expected May 2022)

Janani Aravind PhD Student

(Expected May 2023)

Yohannes Bekele PhD Student (Expected May 2023)

Judith Hernandez-Campillo MS Student

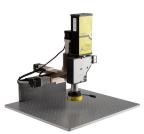
Dawood Bauf MS Student

(Expected May 2023) (Expected May 2023)

Undergraduate Researchers \approx 4 per year

High School Researchers \approx 4 per year

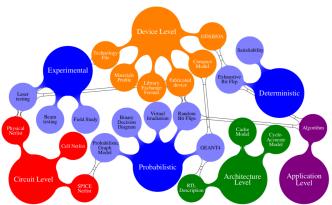
ADEPT Research Approach


- Design and fabricate secure/reliable microelectronics
- Use single-board computers as evaluation boards
 - Arduino as sensor edge-computing node
 - Raspberry Pi as general-purpose computing platform
 - NVIDIA Jetson as AI computing platform
- Run application benchmarks
 - e.g., EEMBC AutoBench, MATLAB Autonomous Vehicle Toolbox, CARLA, data from AutoDrive Challenge
- Demonstrate reliability mechanisms
 - GDB-based fault injection
 - Laser fault injection
- Demonstrate security attacks
 - Rowhammer
 - Laser fault injection
 - Relate to critical systems
 - Space, automotive, military

ADEPT Research Equipment

Servers

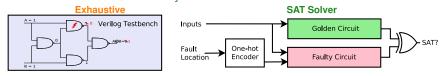
- ► Dell PowerEdge R720 (3)
- ► NVIDIA Quadro RTX 6000 GPUs
- Laser Fault-injection Station (funded; purchase pending)
- Single-board computing platforms and testbeds
- Agilent 16804A 136-channel logic analyzer
- FPGA Development Boards



- About NC A&T (Education, Diversity & Inclusion
- 2 About ADEPT Lab (Existing Resources)
- 3 Research
- 4 Current Projects
- 5 Needs

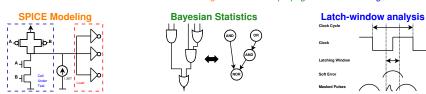
Cross-layer Fault Simulation

- Viewing the system in terms of "hardware" and "software" is a coarse-grained analysis
- Understanding the linkages among the quadrants is critical for development of a reliable system



Simulating Soft Errors

Deterministic


Exhaustive vs. Satisfiability Solver

SAT Solver approach is more scalable and 15 times faster!

Probabilistic

► Probability of Failure (POF) = $P_{generation} \times P_{propagation} \times P_{latching}$

Device-level reliability metrics included in high-level analysis

Requirements for Analyzing Physical Impact

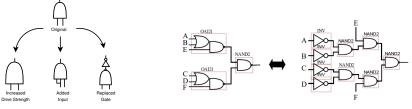
Inputs

- Synthesized gate-level netlist
- GDSII Layout

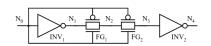
Outputs

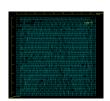
- Location of gates that are vulnerable to SETs and/or SEMTs
- Location of flip-flops that are vulnerable to SEUs
- Input vectors that allow for each gate to be vulnerable

■ Tools


- Icarus Verilog
- Yosys Open SYnthesis Suite (YOSYS)
- ▶ PicoSAT
- ► AIGER

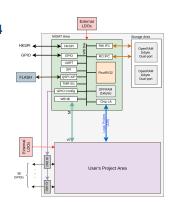
Fault Mitigation: RHBD/RHBC


Reliability-Aware Synthesis and Physical Design


- Leverages design constraints (e.g., area, delay, power)
- Uses available standard cells (i.e., without redesigning the cell)
 Cell Replacement
 Subcircuit Replacement

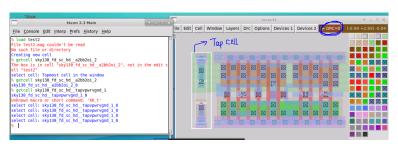
Reliability improved by 20% with less than 1% power overhead!

■ Zero-penalty Improvement?



- About NC A&T (Education, Diversity & Inclusion)
- About ADEPT Lab (Existing Resources)
- 3 Research
- 4 Current Projects
- 5 Needs

Radiation-Hardened-By-Construction Microprocessor


- Sponsor: Office of Naval Research
- Project Period: July 1, 2021 to June 30, 2024
- **Research Goals**
 - Design reliability-aware CMOS IC designs
 - Fabricate designs and verify performance
 - Inject faults via laser to validate reliability improvement
- Google/Skywater/Efabless Open MPW Shuttle Program
- Skywater 130-nm CMOS
- Laser testing at Naval Research Laboratory and in-house

Reliability-Aware DRC

- Create design rules that detect vulnerabilities (e.g., latch-up, charge sharing)
- Google/Skywater/Efabless Open MPW Shuttle Program
- Skywater 130-nm CMOS
- Trained student with "Physical Verification Using SKY130" workshop by Tim Edwards

- About NC A&T (Education, Diversity & Inclusion)
- 2 About ADEPT Lab (Existing Resources
- 3 Research
- 4 Current Projects
- 5 Needs

Needs

- Standardized open-source development and prototype boards
 - Caravel harness?
- Applications that connect to latest research trends (e.g., Al, Cybersecurity)
 - ▶ No new VLSI or IC Design Faculty!
 - Administrators outside of area don't understand
- Textbook integration
 - Maximize class time (biggest pipeline stage)
 - ► Can then leverage educational and research resources
 - Shout out to Erik Brunvand!
- Post-silicon run
 - We built it! Now what?
- Hardware competitions
 - Adds a consistent target and more support
 - ► Shout out to IEEE SSCS International Student Circuit Contest

Questions

